organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Naphthyl 9H-carbazole-4-sulfonate

R. Arulmozhi,^a Jasmine P. Vennila,^b Sunil Manohar Babu,^c Helen P. Kavitha^d and V. Manivannan^e*

^aDepartment of Chemistry, SRM University, Kattankulathur 603 203, Kanchipuram, India, ^bDepartment of Physics, Panimalar Institute of Technology, Chennai 600 095, India, ^cNicholas Piramal Research Centre, Nicholas Piramal India Limited, Mumbai 400 063, India, ^dDepartment of Chemistry, SRM University, Ramapuram, Chennai 600 089, India, and ^eDepartment of Physics, Presidency College, Chennai 600 005, India

Correspondence e-mail: manivan_1999@yahoo.com

Received 23 May 2008; accepted 29 May 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.145; data-to-parameter ratio = 18.9.

In the title compound, $C_{22}H_{15}NO_3S$, the plane of the carbazole ring system forms a dihedral angle of $65.06 (4)^{\circ}$ with the naphthalene ring system. In the crystal structure, a weak intramolecular C-H···O interaction is observed between the naphthalene ring system and the sulfonate group. Two weak intermolecular C-H···O interactions are also observed.

Related literature

For biological activity, see: Itoigawa et al. (2000); Tachibana et al. (2001). For the structure of closely related compounds, see: Manivannan et al. (2005); Hosomi et al. (2000).

Experimental

Crystal data C22H15NO3S

 $M_r = 373.41$

Orthorhombic, Pbca Z = 8Mo $K\alpha$ radiation a = 14.2365 (5) Å b = 9.2098 (4) Å $\mu = 0.21 \text{ mm}^{-1}$ c = 26.3865 (10) Å T = 295 (2) K V = 3459.7 (2) Å³ $0.20 \times 0.16 \times 0.14 \text{ mm}$ Data collection

Bruker Kappa APEXII	22287 measured reflections
diffractometer	4600 independent reflections
Absorption correction: multi-scan	2928 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.034$
$T_{\rm min} = 0.959, T_{\rm max} = 0.971$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	244 parameters
$wR(F^2) = 0.144$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
4600 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C2-H2···O2	0.93	2.42	2.835 (3)	107
$C8 - H8 \cdot \cdot \cdot O3^{i}$	0.93	2.50	3.403 (3)	164
$C17 - H17 \cdots O3^{ii}$	0.93	2.54	3.364 (3)	147

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, z; (ii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1.

Data collection: APEX2: cell refinement: APEX2: data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors acknowledge the Sophisticated Analytical Instrument Facility, Indian Institute of Technology, Chennai, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2296).

References

- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hosomi, H., Ohba, S. & Ito, Y. (2000). Acta Cryst. C56, e144-e146.
- Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893-897.
- Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005). Acta Cryst. E61, o528-o530.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589-5594.

supplementary materials

Acta Cryst. (2008). E64, o1208 [doi:10.1107/S1600536808016334]

1-Naphthyl 9H-carbazole-4-sulfonate

R. Arulmozhi, J. P. Vennila, S. M. Babu, H. P. Kavitha and V. Manivannan

Comment

Carbazole derivatives possess various biological activities, such as antitumor (Itoigawa *et al.*, 2000), antioxidative (Tachibana *et al.*, 2001). We report the crystal structure of the title compound, (I). The geometric parameters of the molecule of (I) (Fig. 1) agree well with the reported structures (Manivannan *et al.*, 2005; Hosomi *et al.*, 2000).

The plane of the carbazole ring forms a dihedral angle of 65.06 (4)° with the naphthalene ring. The torsion angles C2—C1—S1—O2 and C10—C1—S1—O3 [4.21 (19) ° and 46.22 (18)°, respectively] indicate a *syn* conformation of sulf-onyl moiety. The molecular structure is stabilized by a weak intramolecular C—H…O interaction and the crystal packing is stabilized by weak intermolecular C—H…O interactions.

Experimental

1-Naphthalene sulfonyl chloride (1.19 g, 5.2 mmol) dissolved in methelene dichloride was slowly added to 9H carbazol-4-ol (0.9 g, 4.8 mmol), followed by the addition of triethylamine (0.72 g, 7 mmol) at 20 °C. The reaction mixture was warmed at 40 °C and maintained at that temperature for 4 h. The reaction mixture was cooled to 15 °C. and mixed with 10 ml of methelene dichloride and 10 ml of water. The methelene dichloride layer was separated, washed to neutral pH with 5% aqueous sodium dicarbonate solution, dried over anhydrous sodium sulfate and concentrated. The crude compound was recrystallized from toluene.

Refinement

H atoms were positioned geometrically (C—H = 0.93 and N—H = 0.86 Å) and refined using riding model, with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2. The packing of (I), viewed down the b axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

1-Naphthyl 9H-carbazole-4-sulfonate

Crystal data	
C ₂₂ H ₁₅ NO ₃ S	$F_{000} = 1552$
$M_r = 373.41$	$D_{\rm x} = 1.434 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pbca	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 4996 reflections
<i>a</i> = 14.2365 (5) Å	$\theta = 2.6 - 25.7^{\circ}$
b = 9.2098 (4) Å	$\mu = 0.21 \text{ mm}^{-1}$
c = 26.3865 (10) Å	T = 295 (2) K
$V = 3459.7 (2) \text{ Å}^3$	Block, colourless
Z = 8	$0.20 \times 0.16 \times 0.14 \text{ mm}$

Data collection

Bruker Kappa APEXII diffractometer	4600 independent reflections
Radiation source: fine-focus sealed tube	2928 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.034$
T = 295(2) K	$\theta_{\text{max}} = 29.0^{\circ}$
ω and ϕ scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -19 \rightarrow 19$
$T_{\min} = 0.959, T_{\max} = 0.971$	$k = -12 \rightarrow 5$
22287 measured reflections	$l = -36 \rightarrow 36$

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.043$
$wR(F^2) = 0.144$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0727P)^2 + 0.3846P]$ where $P = (F_o^2 + 2F_c^2)/3$

S = 1.06	$(\Delta/\sigma)_{max} < 0.001$
4600 reflections	$\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$
244 parameters	$\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters	(A^2)	
---	---------	--

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.97004 (12)	0.1799 (2)	0.69244 (7)	0.0401 (4)
C2	1.04048 (14)	0.2223 (2)	0.72412 (9)	0.0533 (5)
H2	1.0934	0.2681	0.7111	0.064*
C3	1.03320 (16)	0.1971 (3)	0.77633 (9)	0.0604 (6)
Н3	1.0817	0.2255	0.7978	0.072*
C4	0.95682 (15)	0.1322 (2)	0.79553 (8)	0.0534 (5)
H4	0.9527	0.1177	0.8303	0.064*
C5	0.88229 (13)	0.0854 (2)	0.76414 (7)	0.0422 (4)
C6	0.80228 (14)	0.0161 (2)	0.78423 (8)	0.0515 (5)
Н6	0.7964	0.0055	0.8191	0.062*
C7	0.73420 (15)	-0.0349 (3)	0.75369 (8)	0.0593 (6)
H7	0.6819	-0.0804	0.7676	0.071*
C8	0.74173 (14)	-0.0200 (3)	0.70142 (9)	0.0559 (5)
H8	0.6950	-0.0579	0.6807	0.067*
C9	0.81644 (13)	0.0493 (2)	0.68008 (7)	0.0463 (5)
Н9	0.8197	0.0595	0.6451	0.056*
C10	0.88882 (11)	0.1055 (2)	0.71077 (6)	0.0380 (4)
C11	1.06625 (13)	0.0248 (2)	0.58490 (7)	0.0427 (4)
C12	1.10910 (12)	0.0642 (2)	0.53991 (7)	0.0399 (4)
C13	1.08949 (12)	0.1663 (2)	0.49984 (6)	0.0410 (4)
C14	1.01942 (14)	0.2671 (2)	0.49088 (7)	0.0484 (5)
H14	0.9690	0.2756	0.5131	0.058*
C15	1.02502 (17)	0.3552 (3)	0.44849 (8)	0.0625 (6)
H15	0.9786	0.4240	0.4423	0.075*
C16	1.0999 (2)	0.3407 (3)	0.41514 (8)	0.0716 (7)
H16	1.1027	0.4011	0.3869	0.086*
C17	1.16910 (19)	0.2414 (3)	0.42234 (8)	0.0677 (7)
H17	1.2180	0.2317	0.3992	0.081*
C18	1.16462 (14)	0.1546 (3)	0.46542 (7)	0.0520 (5)
C19	1.19433 (14)	-0.0056 (3)	0.52798 (8)	0.0541 (5)
C20	1.23384 (18)	-0.1090 (3)	0.55964 (10)	0.0730 (8)
H20	1.2903	-0.1537	0.5513	0.088*
C21	1.1879 (2)	-0.1435 (3)	0.60317 (11)	0.0749 (8)
H21	1.2137	-0.2129	0.6247	0.090*
C22	1.10310 (17)	-0.0774 (2)	0.61653 (8)	0.0588 (6)
H22	1.0724	-0.1026	0.6464	0.071*
N1	1.22599 (12)	0.0506 (2)	0.48255 (7)	0.0658 (6)
H1	1.2766	0.0244	0.4673	0.079*
01	0.97919 (8)	0.08998 (15)	0.59681 (5)	0.0457 (3)

supplementary materials

O2	1.06505 (11)	0.30915 (17)	0.62191 (5)	0.0598 (4)
O3	0.89333 (11)	0.30371 (18)	0.61460 (6)	0.0626 (4)
S1	0.97877 (3)	0.23577 (6)	0.628849 (18)	0.04546 (16)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0447 (9)	0.0339 (10)	0.0415 (9)	-0.0010 (8)	0.0063 (7)	-0.0057 (7)
C2	0.0490 (11)	0.0476 (13)	0.0633 (12)	-0.0106 (9)	0.0029 (9)	-0.0084 (10)
C3	0.0636 (13)	0.0608 (16)	0.0568 (12)	-0.0069 (11)	-0.0150 (10)	-0.0117 (11)
C4	0.0691 (13)	0.0501 (13)	0.0410 (10)	0.0017 (11)	-0.0053 (9)	-0.0041 (9)
C5	0.0507 (10)	0.0343 (11)	0.0415 (9)	0.0051 (8)	0.0033 (8)	0.0004 (7)
C6	0.0607 (12)	0.0488 (13)	0.0452 (10)	0.0043 (10)	0.0121 (9)	0.0085 (9)
C7	0.0482 (12)	0.0624 (16)	0.0674 (14)	-0.0075 (10)	0.0138 (10)	0.0132 (11)
C8	0.0442 (11)	0.0612 (15)	0.0624 (12)	-0.0120 (10)	-0.0029 (9)	0.0051 (10)
С9	0.0447 (10)	0.0512 (13)	0.0432 (10)	-0.0032 (9)	0.0001 (8)	0.0022 (8)
C10	0.0389 (9)	0.0338 (10)	0.0414 (9)	0.0029 (8)	0.0046 (7)	-0.0014 (7)
C11	0.0463 (10)	0.0393 (11)	0.0426 (9)	-0.0011 (8)	-0.0025 (8)	-0.0088 (8)
C12	0.0386 (9)	0.0385 (11)	0.0425 (9)	-0.0004 (8)	-0.0005 (7)	-0.0118 (8)
C13	0.0425 (9)	0.0443 (12)	0.0362 (8)	-0.0069 (8)	0.0027 (7)	-0.0110 (8)
C14	0.0557 (11)	0.0483 (13)	0.0411 (10)	-0.0015 (10)	0.0005 (8)	-0.0048 (8)
C15	0.0870 (17)	0.0538 (15)	0.0466 (11)	-0.0035 (12)	-0.0115 (11)	-0.0014 (10)
C16	0.106 (2)	0.0670 (18)	0.0423 (11)	-0.0281 (16)	0.0004 (12)	-0.0027 (11)
C17	0.0813 (16)	0.0796 (19)	0.0423 (11)	-0.0303 (15)	0.0199 (11)	-0.0164 (11)
C18	0.0510(11)	0.0589 (14)	0.0462 (10)	-0.0113 (10)	0.0086 (8)	-0.0190 (9)
C19	0.0454 (11)	0.0576 (14)	0.0594 (12)	0.0075 (10)	-0.0022 (9)	-0.0221 (10)
C20	0.0644 (15)	0.0709 (18)	0.0836 (17)	0.0301 (13)	-0.0190 (13)	-0.0302 (14)
C21	0.0970 (19)	0.0535 (16)	0.0741 (16)	0.0224 (14)	-0.0333 (15)	-0.0095 (12)
C22	0.0841 (16)	0.0438 (13)	0.0485 (11)	0.0015 (11)	-0.0115 (10)	-0.0025 (9)
N1	0.0471 (10)	0.0849 (16)	0.0656 (11)	0.0042 (10)	0.0176 (8)	-0.0262 (10)
01	0.0445 (7)	0.0488 (9)	0.0439 (7)	-0.0075 (6)	0.0085 (5)	-0.0082 (6)
O2	0.0657 (10)	0.0492 (10)	0.0646 (9)	-0.0207 (8)	0.0269 (7)	-0.0099 (7)
O3	0.0674 (10)	0.0622 (11)	0.0582 (9)	0.0180 (8)	0.0182 (7)	0.0154 (7)
S1	0.0501 (3)	0.0403 (3)	0.0459 (3)	-0.0033 (2)	0.0158 (2)	-0.0008 (2)

Geometric parameters (Å, °)

C1—C2	1.363 (3)	C12—C13	1.442 (3)
C1—C10	1.429 (2)	C13—C14	1.383 (3)
C1—S1	1.7594 (19)	C13—C18	1.407 (2)
C2—C3	1.401 (3)	C14—C15	1.384 (3)
С2—Н2	0.9300	C14—H14	0.9300
C3—C4	1.340 (3)	C15—C16	1.388 (3)
С3—Н3	0.9300	C15—H15	0.9300
C4—C5	1.413 (3)	C16—C17	1.358 (4)
C4—H4	0.9300	C16—H16	0.9300
C5—C6	1.409 (3)	C17—C18	1.391 (3)
C5—C10	1.424 (2)	С17—Н17	0.9300
C6—C7	1.345 (3)	C18—N1	1.373 (3)

С6—Н6	0.9300	C19—N1	1.381 (3)
С7—С8	1.390 (3)	C19—C20	1.386 (3)
С7—Н7	0.9300	C20—C21	1.359 (4)
C8—C9	1.362 (3)	С20—Н20	0.9300
С8—Н8	0.9300	C21—C22	1.398 (3)
C9—C10	1.409 (2)	C21—H21	0.9300
С9—Н9	0.9300	С22—Н22	0.9300
C11—C22	1.363 (3)	N1—H1	0.8600
C11—C12	1.383 (3)	O1—S1	1.5867 (14)
C11—O1	1.413 (2)	O2—S1	1.4139 (15)
C12—C19	1.409 (3)	O3—S1	1.4186 (15)
C2—C1—C10	121.70 (18)	C18—C13—C12	106.01 (17)
C2—C1—S1	116.71 (15)	C13—C14—C15	119.3 (2)
C10-C1-S1	121.35 (13)	C13—C14—H14	120.3
C1—C2—C3	120.09 (19)	C15—C14—H14	120.3
C1—C2—H2	120.0	C14—C15—C16	120.0 (2)
С3—С2—Н2	120.0	C14—C15—H15	120.0
C4—C3—C2	120.4 (2)	С16—С15—Н15	120.0
С4—С3—Н3	119.8	C17—C16—C15	122.2 (2)
С2—С3—Н3	119.8	C17—C16—H16	118.9
C3—C4—C5	121.59 (19)	С15—С16—Н16	118.9
С3—С4—Н4	119.2	C16—C17—C18	117.9 (2)
С5—С4—Н4	119.2	C16—C17—H17	121.0
C6—C5—C4	121.64 (18)	С18—С17—Н17	121.0
C6—C5—C10	118.94 (17)	N1-C18-C17	129.9 (2)
C4—C5—C10	119.40 (17)	N1-C18-C13	108.96 (18)
C7—C6—C5	121.01 (19)	C17—C18—C13	121.2 (2)
С7—С6—Н6	119.5	N1—C19—C20	130.4 (2)
С5—С6—Н6	119.5	N1-C19-C12	107.7 (2)
C6—C7—C8	120.28 (19)	C20-C19-C12	121.9 (2)
С6—С7—Н7	119.9	C21—C20—C19	118.3 (2)
С8—С7—Н7	119.9	C21—C20—H20	120.8
C9—C8—C7	121.1 (2)	С19—С20—Н20	120.8
С9—С8—Н8	119.4	C20—C21—C22	121.8 (2)
С7—С8—Н8	119.4	C20-C21-H21	119.1
C8—C9—C10	120.37 (18)	C22—C21—H21	119.1
С8—С9—Н9	119.8	C11—C22—C21	118.6 (2)
С10—С9—Н9	119.8	C11—C22—H22	120.7
C9—C10—C5	118.22 (16)	C21—C22—H22	120.7
C9—C10—C1	125.02 (16)	C18—N1—C19	109.83 (16)
C5—C10—C1	116.75 (16)	C18—N1—H1	125.1
C22—C11—C12	122.49 (19)	C19—N1—H1	125.1
C22-C11-O1	119.68 (18)	C11—O1—S1	118.79 (11)
C12-C11-O1	117.78 (17)	O2—S1—O3	119.98 (11)
C11—C12—C19	116.86 (19)	O2—S1—O1	109.40 (8)
C11—C12—C13	135.65 (17)	O3—S1—O1	103.61 (9)
C19—C12—C13	107.48 (17)	O2—S1—C1	108.93 (9)
C14—C13—C18	119.31 (19)	O3—S1—C1	108.73 (9)
C14—C13—C12	134.63 (16)	O1—S1—C1	105.14 (8)

supplementary materials

C10-C1-C2-C3	-1.9 (3)	C15—C16—C17—C18	-1.5 (3)
S1—C1—C2—C3	172.46 (18)	C16-C17-C18-N1	-177.6 (2)
C1—C2—C3—C4	-0.5 (4)	C16-C17-C18-C13	1.6 (3)
C2—C3—C4—C5	1.0 (4)	C14—C13—C18—N1	178.73 (17)
C3—C4—C5—C6	179.5 (2)	C12-C13-C18-N1	0.9 (2)
C3—C4—C5—C10	0.9 (3)	C14—C13—C18—C17	-0.6 (3)
C4—C5—C6—C7	-176.4 (2)	C12-C13-C18-C17	-178.51 (18)
C10—C5—C6—C7	2.2 (3)	C11-C12-C19-N1	-178.93 (17)
C5—C6—C7—C8	0.0 (4)	C13-C12-C19-N1	-0.1 (2)
C6—C7—C8—C9	-1.6 (4)	C11—C12—C19—C20	0.0 (3)
C7—C8—C9—C10	1.0 (3)	C13—C12—C19—C20	178.8 (2)
C8—C9—C10—C5	1.2 (3)	N1-C19-C20-C21	179.0 (2)
C8—C9—C10—C1	-179.92 (19)	C12-C19-C20-C21	0.3 (4)
C6—C5—C10—C9	-2.7 (3)	C19—C20—C21—C22	-0.2 (4)
C4—C5—C10—C9	175.89 (18)	C12—C11—C22—C21	0.7 (3)
C6—C5—C10—C1	178.26 (17)	O1-C11-C22-C21	178.11 (18)
C4—C5—C10—C1	-3.1 (3)	C20-C21-C22-C11	-0.3 (4)
C2-C1-C10-C9	-175.26 (19)	C17-C18-N1-C19	178.3 (2)
S1—C1—C10—C9	10.6 (3)	C13-C18-N1-C19	-1.0 (2)
C2-C1-C10-C5	3.7 (3)	C20-C19-N1-C18	-178.2 (2)
S1-C1-C10-C5	-170.45 (14)	C12-C19-N1-C18	0.6 (2)
C22-C11-C12-C19	-0.6 (3)	C22-C11-O1-S1	91.6 (2)
O1-C11-C12-C19	-177.99 (16)	C12-C11-O1-S1	-90.91 (17)
C22-C11-C12-C13	-179.0 (2)	C11—O1—S1—O2	25.23 (16)
O1-C11-C12-C13	3.6 (3)	C11—O1—S1—O3	154.30 (13)
C11—C12—C13—C14	0.7 (4)	C11—O1—S1—C1	-91.63 (14)
C19-C12-C13-C14	-177.9 (2)	C2-C1-S1-O2	4.21 (19)
C11-C12-C13-C18	178.1 (2)	C10-C1-S1-O2	178.61 (15)
C19-C12-C13-C18	-0.5 (2)	C2—C1—S1—O3	-128.18 (17)
C18-C13-C14-C15	-0.6 (3)	C10-C1-S1-O3	46.22 (18)
C12—C13—C14—C15	176.6 (2)	C2-C1-S1-O1	121.38 (16)
C13—C14—C15—C16	0.8 (3)	C10-C1-S1-O1	-64.22 (16)
C14—C15—C16—C17	0.3 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$			
С2—Н2…О2	0.93	2.42	2.835 (3)	107			
C8—H8···O3 ⁱ	0.93	2.50	3.403 (3)	164			
C17—H17···O3 ⁱⁱ	0.93	2.54	3.364 (3)	147			
Symmetry codes: (i) $-x+3/2$, $y-1/2$, z ; (ii) $x+1/2$, $-y+1/2$, $-z+1$.							

Fig. 1

